

Test Report

Report No.: RKEYS250722088

Date: Aug. 25, 2025

Page 1 of 56

CE EMC

For

Product: LED Dance Floor

Model: LK-I01,LK-I01I,LK-I02,LK-I03,LK-I04,LK-I05,LK-DI01,LK-DI02,LK-DI03I, LK-DI04,LK-DI05,LK-C01,LK-C02,LK-C03,LK-C04,LK-N01,LK-N02,LK-N03,LK-N04, LK-D36,LK-D64,LK-D144,LK-D255,LK-D256,LK-D64I,LK-S01,LK-S02,LK-S03,LK-S04, LK-CH01,LK-CH02,LK-CH01I,LK-CH02I,LK-CH03,LK-P80,LK-P100,LK-P01,LK-R01, LK-R02,LK-R03,LK-L01I,LK-L02,LK-L03,LK-F01,LK-F02,LK-F03,LK-F04,LK-TW01, LK-TW02,LK-TW03,LK-L01,LK-L02,LK-L03,LK-DA01,LK-DA02,LK-DA03,LK-IS01, LK-IS02,LK-IS03,LK-DU01,LK-DU02,LK-DU03,LK-T60,LK-T70,LK-T80,LK-T90,LK-PH100, LK-PH115,LK-PH120,LK-PH01C,LK-G01,LK-G02,LK-G03,LK-G04,LK-G05, LK-G06,LK-G07,LK-G08,LK-G09,LK-G10,LK-G11,LK-G12,LK-G13,LK-G14, LK-G15,LK-G16.

Report No.: RKEYS250722088

Issued for

Guangzhou Hongyun Optoelectronic Equipment Co.,Ltd

No. 10-1, 3rd Street, Chatang Xincun, Tanbu Town, Huadu District, Guangzhou, China 510800

Issued by

Guangdong KEYS Testing Technology Co.,Ltd.

Address: Building 1, No.18, Shihuan Road, Dongcheng Subdistrict, Dongguan, Guangdong, China

Scan to view
the original file

Guangdong KEYS Testing Technology Co., Ltd.

Address: Building 1, No.18, Shihuan Road, Dongcheng Subdistrict, Dongguan, Guangdong, China
Tel: +86-0769-22221088 <http://www.keys-lab.com> E-mail: info@keys-lab.com

This report is only responsible for the test results of the samples submitted for inspection, and is not responsible for the source of the samples submitted for inspection.
This report shall not be altered, increased or deleted. Without written approval of KEYS, this test report shall not be copied except in full and published as advertisement.

TABLE OF CONTENTS

1. TEST CERTIFICATION	3
2. TEST SUMMARY	5
3. TEST SITE	6
3.1. TEST FACILITY	6
3.2. MEASUREMENT UNCERTAINTY	6
3.3. LIST OF TEST AND MEASUREMENT INSTRUMENTS	6
4. EUT DESCRIPTION	9
5. TEST METHODOLOGY	11
5.1. TEST MODE	11
5.2. EUT SYSTEM OPERATION	11
6. SETUP OF EQUIPMENT UNDER TEST	12
6.1. DESCRIPTION OF SUPPORT UNITS	12
6.2. CONFIGURATION OF SYSTEM UNDER TEST	12
7. EMISSION TEST	13
7.1. CONDUCTED EMISSION MEASUREMENT	13
7.2. RADIATED ELECTROMAGNETIC DISTURBANCE	18
7.3. RADIATED EMISSION MEASUREMENT	23
7.4. HARMONICS CURRENT MEASUREMENT	27
7.5. VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT	30
8. IMMUNITY TEST	33
8.1. GENERAL DESCRIPTION	33
8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION	35
8.3. ELECTROSTATIC DISCHARGE (ESD)	36
8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)	39
8.5. ELECTRICAL FAST TRANSIENT (EFT)	42
8.6. SURGE IMMUNITY TEST	44
8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)	46
8.8. POWER FREQUENCY MAGNETIC FIELD	48
8.9. VOLTAGE DIP & VOLTAGE INTERRUPTIONS	50
9. PHOTOGRAPHS OF THE TEST CONFIGURATION	52
10. PHOTOGRAPHS OF EUT	54

1. TEST CERTIFICATION

Product:	LED Dance Floor
Trade mark:	LK
SModel:	LK-I01,LK-I01I,LK-I02,LK-I03,LK-I04,LK-I05,LK-DI01,LK-DI02,LK-DI03I, LK-DI04,LK-DI05,LK-C01,LK-C02,LK-C03,LK-C04,LK-N01,LK-N02,LK-N03, LK-N04,LK-D36,LK-D64,LK-D144,LK-D255,LK-D256,LK-D64I,LK-S01, LK-S02,LK-S03,LK-S04,LK-CH01,LK-CH02,LK-CH01I,LK-CH02I,LK-CH03, LK-P80,LK-P100,LK-P01,LK-R01,LK-R02,LK-R03,LK-L01I,LK-L02,LK-L03, LK-F01,LK-F02,LK-F03,LK-F04,LK-TW01,LK-TW02,LK-TW03,LK-L01, LK-L02,LK-L03,LK-DA01,LK-DA02,LK-DA03,LK-IS01,LK-IS02,LK-IS03, LK-DU01,LK-DU02,LK-DU03,LK-T60,LK-T70,LK-T80,LK-T90,LK-PH100, LK-PH115,LK-PH120,LK-PH01C,LK-G01,LK-G02,LK-G03,LK-G04,LK-G05, LK-G06,LK-G07,LK-G08,LK-G09,LK-G10,LK-G11,LK-G12,LK-G13,LK-G14, LK-G15,LK-G16.
Applicant :	Guangzhou Hongyun Optoelectronic Equipment Co.,Ltd
Address:	No. 10-1, 3rd Street, Chatang Xincun, Tanbu Town, Huadu District, Guangzhou, China 510800
Manufacturer:	Guangzhou Hongyun Optoelectronic Equipment Co.,Ltd
Address:	No. 10-1, 3rd Street, Chatang Xincun, Tanbu Town, Huadu District, Guangzhou, China 510800
Sample Received Date:	Jul. 22, 2025
Test Date:	Jul. 22, 2025 to Jul. 25, 2025
Test Voltage:	Input: AC 90-240V, 50/60Hz Output: DC 24V,
Applicable Standards:	EN IEC 55015:2019+A11:2020 EN IEC 61547:2023 EN IEC 61000-3-2:2019/A2:2024 EN 61000-3-3:2013/A2:2021/AC:2022-01
Remark:	/

Report No.: RKEYS250722088

Date: Aug. 25, 2025

Page 4 of 56

The above equipment has been tested by Guangdong KEYS Testing Technology Co., Ltd. and found compliance with the requirements in the technical standards mentioned above. The test results presented in this report only relate to the product/system tested. The Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Test Engineer:

Aimee Gao / Engineer

Technical Manager:

Bruce Zhang /Manager

2. TEST SUMMARY

EMISSION			
Standard	Item	Result	Remarks
EN IEC 55015:2019+A11:2020	Conducted (Main Port)	PASS	Complied with limit
	Radiated Electromagnetic Disturbance	PASS	Complied with limit
	Radiated Emission	PASS	Complied with limit
EN IEC 61000-3-2:2019/A2:2024	Harmonic current emissions	N/A	N/A
EN 61000-3-3:2013/A2:2021/AC:2022-01	Voltage fluctuations & flicker	PASS	Complied with limit

IMMUNITY (EN IEC 61547:2023)			
Standard	Item	Result	Remarks
EN 61000-4-2:2009	ESD	PASS	Complied with the requirements
EN IEC 61000-4-3:2020	RS	PASS	Complied with the requirements
EN 61000-4-4:2012	EFT	PASS	Complied with the requirements
EN 61000-4-5:2014+A1:2017	Surge	PASS	Complied with the requirements
EN IEC 61000-4-6:2023	CS	PASS	Complied with the requirements
EN 61000-4-8:2010	PFMF	N/A	N/A
EN IEC 61000-4-11:2020	Voltage dips & voltage variations	PASS	Complied with the requirements

Note: 1) The test result verdict is decided by the limit of test standard

2) The information of measurement uncertainty is available upon the customer's request.

3. TEST SITE

3.1. TEST FACILITY

Guangdong KEYS Testing Technology Co., Ltd.

Building 1, No.18, Shihuan Road, Dongcheng Subdistrict, Dongguan, Guangdong, China

3.2. MEASUREMENT UNCERTAINTY

Parameter	Uncertainty
Temperature	±1°C
Humidity	±5%
DC and Low Frequency Voltages	±3%
Conducted Emission(150KHz-30MHz)	±3.60dB
Radiated Emission(30MHz-1GHz)	±4.76dB
Radiated Emission (1GHz-18GHz)	±4.44dB

Note 1: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3. LIST OF TEST AND MEASUREMENT INSTRUMENTS

3.3.1. For conducted emission at the mains terminals test

Equipment	Manufacturer	Model	Equipment No.	Serial No.	Last Cal.	Cal.Interval
EMI Test Receiver	Rohde&Schwarz	ESCI	KEYS-EL-203	1166.5950.03-101142	Mar. 03, 2025	1 Year
Pulse Limiter	Rohde&Schwarz	ESH3-Z2	KEYS-EL-201	0357.8810.54-101857-hz	Mar. 03, 2025	1 Year
LISN	Rohde&Schwarz	ENV216	KEYS-EL-202	3560.6550.12-103020-YU	Mar. 03, 2025	1 Year
Test software	Tonscend			JS32-CE Version 5.0.0		

Report No.: RKEYS250722088

Date: Aug. 25, 2025

Page 7 of 56

3.3.2. For radiated emission test (9kHz-30MHz)

Equipment	Manufacturer	Model	Equipment No.	Serial No.	Last Cal.	Cal.Interval
EMI Test Receiver	Rohde&Schwarz	ESCI	KEYS-EL-203	1166.5950.03-101142	Mar. 03, 2025	1 Year
Three-ring antenna	Da Ze	ZN30401	KEYS-EL-252	/	May 17, 2025	1 Year
Test software	Tonscend			JS32-CE Version 5.0.0		

3.3.3. For radiated emission test (30MHz-1GHz)

Name of Equipment	Manufacturer	Model	Equipment	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCI7	KEYS-EL-205	1166.5950.03-100633	Mar. 03, 2025	1 Year
Logarithmic periodic antenna	Schwarzbeck	VULB91 68	KEYS-EL-209	01145	Mar. 06, 2025	3 Year
Preamplifier	HP	8447F	KEYS-EL-210	1-18-53G22	Mar. 03, 2025	1 Year
3m Anechoic Chamber	Taihe MaoRui	9*6*6	KEYS-EL-234	/	Oct. 09, 2024	5 Year
Test software	Tonscend			JS32-RE Version 5.0.0		

3.3.4. For harmonic current emissions and voltage fluctuations/flicker test

Name of Equipment	Manufacturer	Model	Equipment	Serial No.	Last Cal.	Cal. Interval
AC Power Source	California instruments	5001i-400	KEYS-EL-248	55979	May 17, 2025	1 Year
Harmonic and Flicker Analyzer	California instruments	PACS-1	KEYS-EL-249	72145	May 17, 2025	1 Year
Test software	California Instruments			CTS 4 Version 4.32.0		

3.3.5. For electrostatic discharge immunity test

Name of Equipment	Manufacturer	Model	Equipment	Serial No.	Last Cal.	Cal. Interval
ESD Tester	PRIMA	ESD61002TB	KEYS-EL-215	PR9240625796	Mar. 05, 2025	1 Year

3.3.6. For radio frequency electromagnetic field immunity (R/S) test (DQT)

Name of Equipment	Manufacturer	Model	Equipment	Serial No.	Last Cal.	Cal. Interval
Amplifier	Micotop	MPA-80-1000-250	KEYS-EL-258	MAP2503096	May 17, 2025	1 Year
Amplifier	Micotop	MPA-1000-6000-100	KEYS-EL-259	MPA2503098	May 19, 2025	1 Year
Power Meter	Agilent	E4417A	KEYS-EL-260	GB41293356	May 17, 2025	1 Year
Power Sensor	Agilent	E9304A	KEYS-EL-261	MY55200008	May 17, 2025	1 Year
Power Sensor	Agilent	E9304A	KEYS-EL-262	MY55200004	May 17, 2025	1 Year
Signal Generator	ROHDE&SCHWARZ	SMB100A	KEYS-EL-263	102913	May 17, 2025	1 Year
Log-Per-Broadband Antenna	SKET	STLP 9129 PLUS	KEYS-EL-264	/	May 19, 2025	3 Year
Audio Analyzer	ROHDE&SCHWARZ	UPP200	KEYS-EL-267	120175	May 17, 2025	1 Year

3.3.7. For electrical fast transient/burst immunity test

Name of Equipment	Manufacturer	Model	Equipment	Serial No.	Last Cal.	Cal. Interval
Fast Transient Burst Simulator	PRIMA	EFT61004TA	KEYS-EL-218	PR9240743972	Mar. 03, 2025	1 Year
Clamp	PRIMA	PEFT-C105	KEYS-EL-219	PEFT-1170	Mar. 03, 2025	1 Year

3.3.8. For surge immunity test

Name of Equipment	Manufacturer	Model	Equipment	Serial No.	Last Cal.	Cal. Interval
Lighting Surge Generator	PRIMA	SUG61005TB-2216	KEYS-EL-217	PR200854619	Mar. 03, 2025	1 Year
Coupling/Decoupling Network	PRIMA	SUG-CDN-108	KEYS-EL-216	PR924105429	Mar. 03, 2025	1 Year

3.3.9. For injected currents susceptibility test

Name of Equipment	Manufacturer	Model	Equipment	Serial No.	Last Cal.	Cal. Interval
CS Test system	TESEQ	NSG4070	KEYS-EL-255	30608	May 17, 2025	1 Year
6dB Attenuator	TESEQ	ATN6075	KEYS-EL-256	30783	May 17, 2025	1 Year
CDN	TESEQ	CDN M016	KEYS-EL-254	33518	May 17, 2025	1 Year
EM-Clamp	TESEQ	KEMZ 801A	KEYS-EL-257	33425	May 17, 2025	1 Year

3.3.10. For power frequency magnetic field immunity test

Equipment	Manufacturer	Model	Equipment No.	Serial No.	Last Cal.	Cal. Interval
POWER FREQUENCY MAGNETIC FIELD GENERATION	EVERFINE	EMS61000-8K	KEYS-EL-273	608002	May 16, 2025	1 Year

3.3.11. For voltage dips and short interruptions immunity test

Name of Equipment	Manufacturer	Model	Equipment	Serial No.	Last Cal.	Cal. Interval
Cycle Sag Simulator	PRIMA	DRP61011TB	KEYS-EL-220	PR924086817	Mar. 03, 2025	1 Year

4. EUT DESCRIPTION

Product	LED Dance Floor
Main Model	LK-I01
Supplied Voltage	Input: AC 90-240V, 50/60Hz Output: DC 24V,
Power	--

I/O PORT

I/O PORT TYPES	Q'TY	TESTED WITH
AC Port	1	<input checked="" type="checkbox"/>
DC Port	1	<input type="checkbox"/>

Models Difference

All models are the same except for the model name, color, size, and power.

5. TEST METHODOLOGY

5.1. TEST MODE

The EUT was tested together with the thereafter additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The following test mode(s) were assessed.

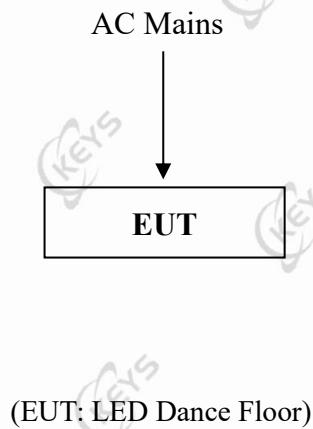
Test Items		Test Mode
Emission	Conducted Emission	Lighting
	Radiated Electromagnetic Disturbance	Lighting
	Radiated Emission	Lighting
	Harmonic current emissions	N/A
	Voltage fluctuations & flicker	Lighting
Immunity	ESD	Lighting
	RS	Lighting
	EFT	Lighting
	Surge	Lighting
	C/S	Lighting
	M/S	N/A
	Dips	Lighting

5.2. EUT SYSTEM OPERATION

1. Set up EUT with the support equipment.
2. Make sure the EUT work normally during the test.

6. SETUP OF EQUIPMENT UNDER TEST

6.1. DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1.	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6.2. CONFIGURATION OF SYSTEM UNDER TEST

7. EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. LIMITS

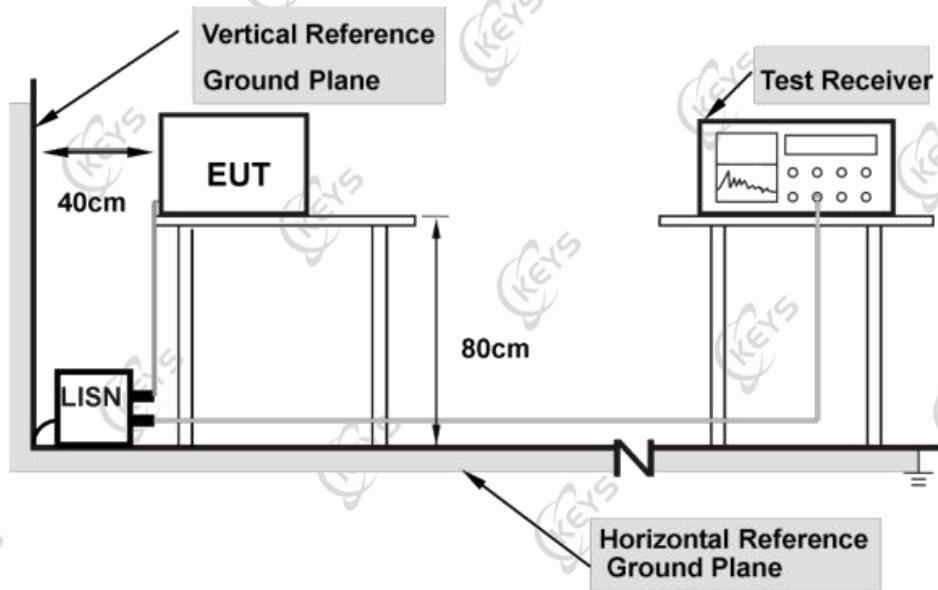
FREQUENCY (MHz)	LIMITS(dB μ V)	
	Quasi-peak	Average
0.009-0.05	110	N/A
0.05-0.15	90 – 80	N/A
0.15 - 0.5	66 – 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1) The lower limit shall apply at the transition frequencies.

2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz

7.1.2. TEST PROCEDURES

The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane. When the EUT is floor standing equipment, it is placed on the ground plane, which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane. The EUT should be 0.8 m apart from the AMN, where the mains cable supplied by the manufacturer is longer than 0.8 m, the excess should be folded at the centre into a bundle no longer than 0.4 m, Details please refer to test setup photography.


The Receiver scanned from 9 kHz to 30 MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

A scanning was taken on the power lines, Line and neutral, recording at least six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

Note: Test Software Name: e3, Software Version: 1.0.0.0.

7.1.3. TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs(AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

7.1.4. TEST RESULT

Product name	LED Dance Floor	Tested By	Brian
Model	LK-I01	Detector Function	Peak / Quasi-peak/AV
Test Mode	Lighting	6 dB Bandwidth	200 Hz/9 kHz
Environmental Conditions	24.3°C, 54.1 % RH, 101.1 kPa	Test Result	Pass

Note:

L = Line Line, N = Neutral Line

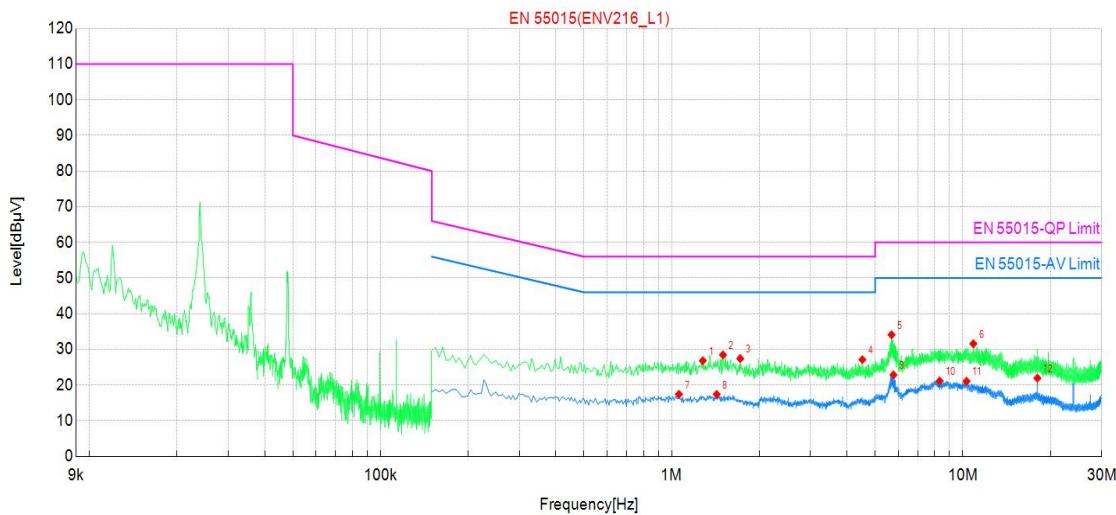
Freq. = Emission frequency in MHz

Reading level (dB μ V) = Receiver reading

Corr. Factor (dB) = attenuator + Cable loss

Level (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit (dB μ V) = Limit stated in standard

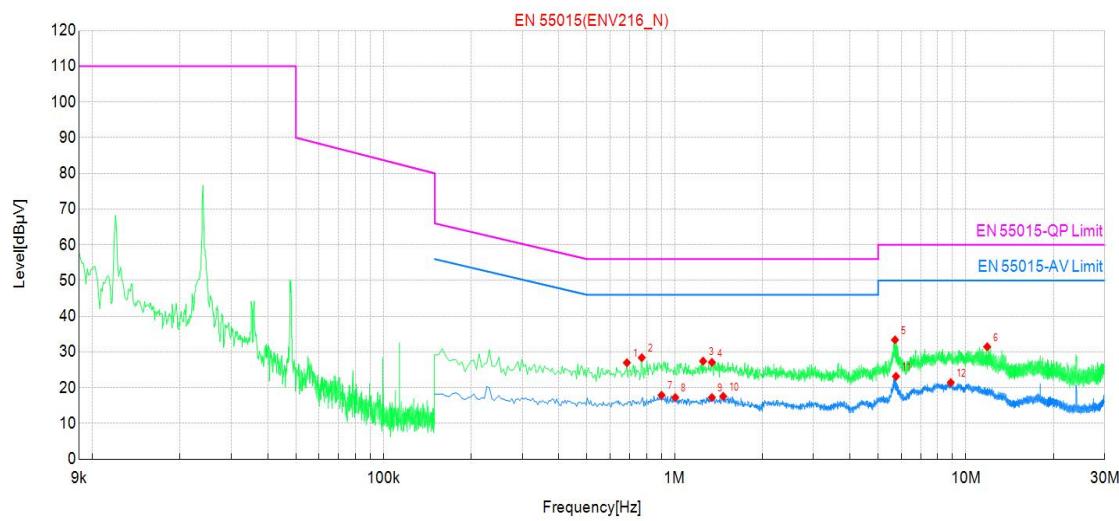

Over Limit (dB) = Level (dB μ V) - Limit (dB μ V)

QP = Quasi-Peak

AV = Average

Please refer to the following diagram:

Line:


Suspected Data List

NO.	Frequency [MHz]	Reading [dB μ V]	Level [dB μ V]	Factor [dB]	Limit [dB μ V]	Margin [dB]	Phase	Detector	Verdict
1	1.279500	7.62	26.82	19.20	56.00	29.18	L1	QP	PASS
2	1.500000	9.25	28.45	19.20	56.00	27.55	L1	QP	PASS
3	1.720500	8.22	27.42	19.20	56.00	28.58	L1	QP	PASS
4	4.519500	7.89	27.10	19.21	56.00	28.90	L1	QP	PASS
5	5.694000	14.91	34.09	19.18	60.00	25.91	L1	QP	PASS
6	10.873500	12.15	31.57	19.42	60.00	28.43	L1	QP	PASS
7	1.059000	-1.81	17.39	19.20	46.00	28.61	L1	AV	PASS
8	1.428000	-1.83	17.37	19.20	46.00	28.63	L1	AV	PASS
9	5.779500	3.66	22.84	19.18	50.00	27.16	L1	AV	PASS
10	8.326500	1.86	21.14	19.28	50.00	28.86	L1	AV	PASS
11	10.302000	1.60	21.05	19.45	50.00	28.95	L1	AV	PASS
12	18.046500	2.55	21.93	19.38	50.00	28.07	L1	AV	PASS

Note:(1)Level=Reading+Factor

(2)Margin=Limit-Level

Neutral:

Suspected Data List									
NO.	Frequency [MHz]	Reading [dB μ V]	Level [dB μ V]	Factor [dB]	Limit [dB μ V]	Margin [dB]	Phase	Detector	Verdict
1	0.685500	7.70	26.98	19.28	56.00	29.02	N	QP	PASS
2	0.771000	9.13	28.40	19.27	56.00	27.60	N	QP	PASS
3	1.252500	8.22	27.42	19.20	56.00	28.58	N	QP	PASS
4	1.342500	7.88	27.08	19.20	56.00	28.92	N	QP	PASS
5	5.712000	14.13	33.38	19.25	60.00	26.62	N	QP	PASS
6	11.850000	12.19	31.45	19.26	60.00	28.55	N	QP	PASS
7	0.901500	-1.33	17.90	19.23	46.00	28.10	N	AV	PASS
8	1.005000	-1.95	17.25	19.20	46.00	28.75	N	AV	PASS
9	1.342500	-1.95	17.25	19.20	46.00	28.75	N	AV	PASS
10	1.468500	-1.63	17.57	19.20	46.00	28.43	N	AV	PASS
11	5.757000	3.91	23.16	19.25	50.00	26.84	N	AV	PASS
12	8.880000	2.14	21.43	19.29	50.00	28.57	N	AV	PASS

Note:(1)Level=Reading+Factor

(2)Margin=Limit-Level

7.2. RADIATED ELECTROMAGNETIC DISTURBANCE

7.2.1. LIMITS

Frequency	Limits for loop diameter dB(μ A)*		
	2 m	3 m	4 m
9 kHz-70 kHz	88	81	75
70 kHz-150 kHz	88-58	81-51	75-45
150 kHz-3.0 MHz	58-2	51-15	45-9
3.0 MHz-30 MHz	22	15-16	9-12

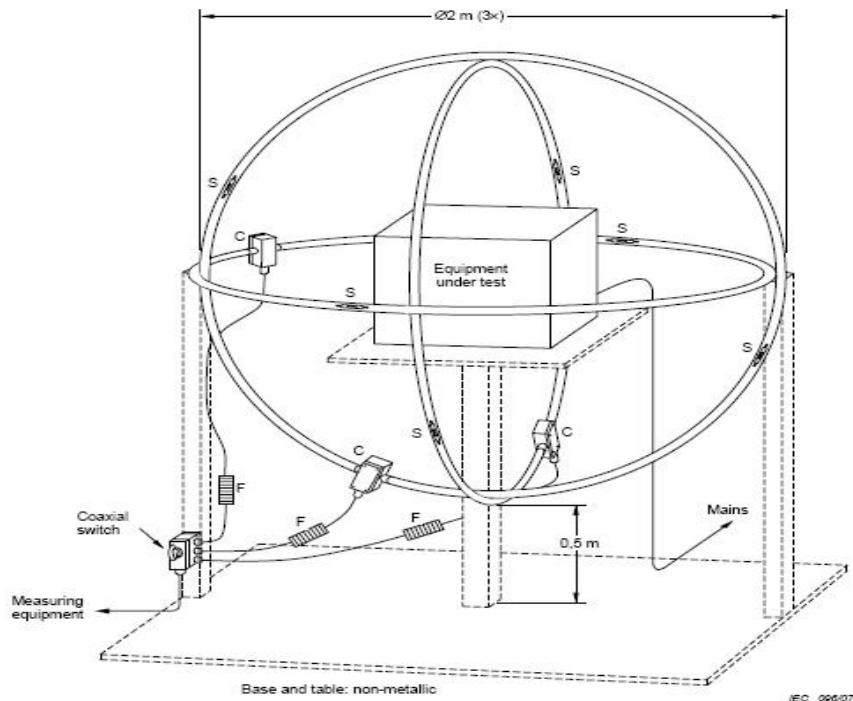
* At the transition frequency, the lower limit applies.

** Decreasing linearly with the logarithm of the frequency.

*** Increasing linearly with the logarithm of the frequency.

7.2.2. TEST PROCEDURE

The EUT and support equipment are positioned in the centre of loop antenna system (LAS). The LAS consists of three circular, mutually perpendicular large-loop antennas (LLAs), having a diameter of 2 m, supported by a non-metallic base. A 50Ω coaxial cable between the current probe of an LLA and the coaxial switch, and between this switch and the measuring equipment, shall have surface transfer impedance smaller than $10 \text{ m}\Omega/\text{m}$ at 100 kHz and $1 \text{ m}\Omega/\text{m}$ at 10 MHz. The distance between the outer diameter of the loop antenna system and nearby objects, such as floor and walls, shall be at least 0.5 m as per CISPR 15/ EN 55015.


The induced current in the loop antenna is measured by means of a current probe (1 V/A) and the CISPR measuring receiver. By means of a coaxial switch, the three field directions (X, Y, Z) can be measured in sequence.

The receiver scanned from 9 kHz to 30 MHz for emissions in each of the test modes, and recorded at least the six highest emissions. Each value shall comply with the requirement given.

The test data of the worst-case condition(s) was recorded.

Note: Test Software Name: e3, Software Version: 1.0.0.0.

7.2.3. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.2.4. TEST RESULT

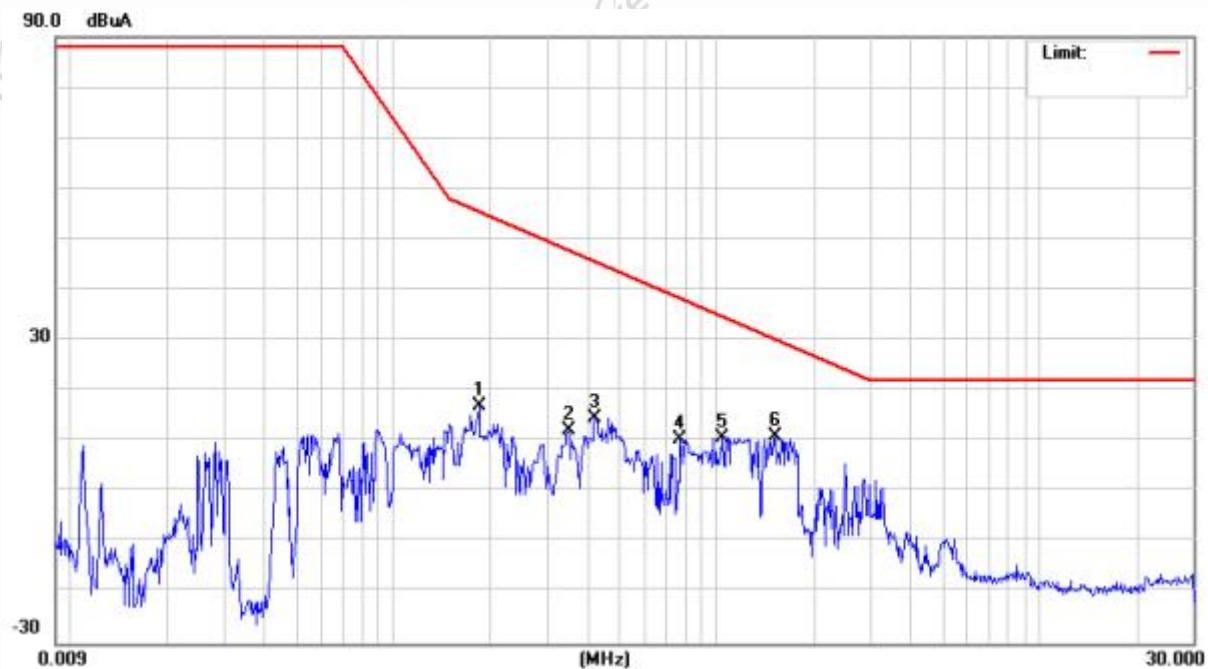
Product name	LED Dance Floor	Antenna Pole	X, Y, Z
Model	LK-I01	Antenna Diameter	2 m
Test Mode	Lighting	Detector Function	Peak
Environmental Conditions	24.3°C, 54.1 % RH, 101.1 kPa	6 dB Bandwidth	200 Hz/9 kHz
Tested By	Brian	Test Result	Pass

Note:

Freq. = Emission frequency in MHz

Reading level (dB μ A) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss


Measurement (dB μ A) = Reading level (dB μ A) + Corr. Factor (dB)

Limit (dB μ A) = Limit stated in standard

Over Limit (dB) = Measurement (dB μ A) – Limit (dB μ A) QP = Quasi-Peak

Please refer to the following diagram:

X:

No.	Frequency (MHz)	Reading Level(dBuA)	Factor (dB)	Measure-ment(dBuA)	Limit (dBuA)	Over (dB)	Detector	Comment
1	0.1839	6.56	10.48	17.04	55.54	-38.50	peak	
2	0.3500	1.73	10.43	12.16	47.81	-35.65	peak	
3	0.4220	4.16	10.41	14.57	45.56	-30.99	peak	
4	0.7780	0.06	10.44	10.50	38.22	-27.72	peak	
5	1.0460	0.23	10.47	10.70	34.66	-23.96	peak	
6*	1.5380	0.58	10.42	11.00	30.03	-19.03	peak	

Y:

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure-ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	0.1015	-0.36	10.50	10.14	73.36	-63.22	peak	
2	0.1488	1.74	10.49	12.23	58.29	-46.06	peak	
3	0.1839	6.56	10.48	17.04	55.54	-38.50	peak	
4	0.2346	2.50	10.46	12.96	52.62	-39.66	peak	
5*	0.4676	3.28	10.40	13.68	44.33	-30.65	peak	
6	0.5454	-8.54	10.40	1.86	42.48	-40.62	peak	

Z:

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	0.0796	3.30	10.50	13.80	82.94	-69.14	peak	
2	0.1488	7.26	10.49	17.75	58.29	-40.54	peak	
3	0.1995	8.35	10.47	18.82	54.57	-35.75	peak	
4	0.2544	2.95	10.46	13.41	51.65	-38.24	peak	
5	0.3192	2.03	10.44	12.47	48.92	-36.45	peak	
6*	0.5916	0.26	10.41	10.67	41.51	-30.84	peak	

7.3. RADIATED EMISSION MEASUREMENT

7.3.1. LIMITS

FREQUENCY (MHz)	Limit (dB μ V/m) (At 3 m)	Limit (dB μ V/m) (At 10 m)
30 ~ 230	40	30
230 ~ 300	47	37

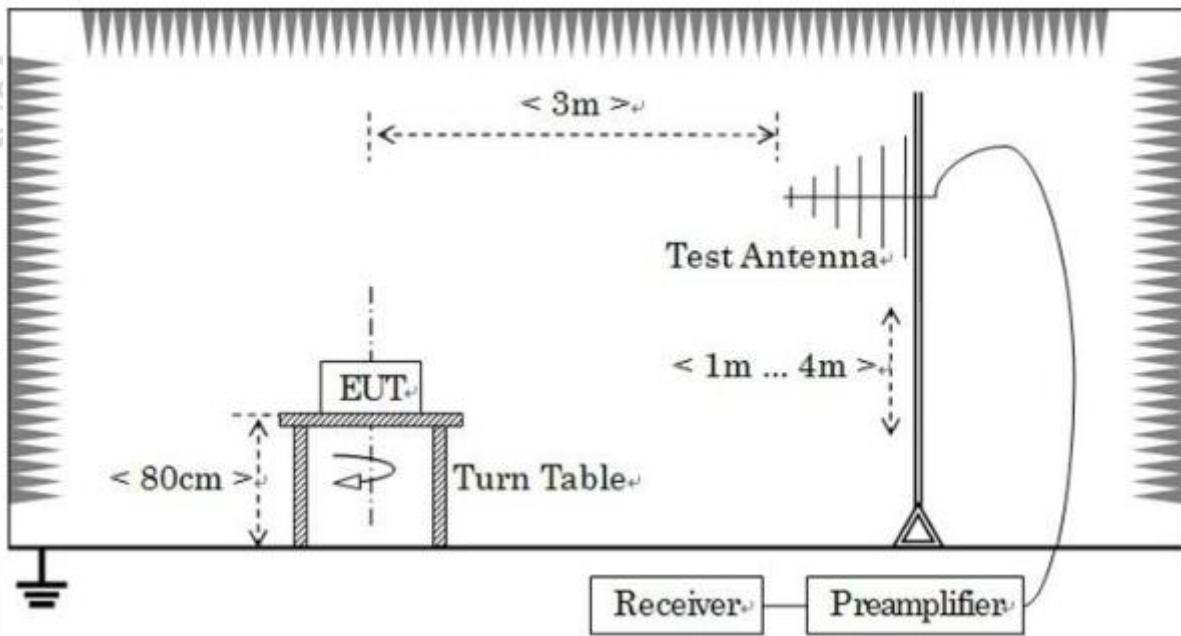
Note: 1) The lower limit shall apply at the transition frequencies.

2) Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

7.3.2. TEST PROCEDURE

The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is floor standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

The antenna was placed at 3 meter away from the EUT. The antenna connected to the spectrum analyzer via a cable and at times a pre-amplifier would be used.


The analyzer / receiver quickly scanned from 30 MHz to 300 MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

During the above scans, the emissions were maximized by cable manipulation. Each mode is measured, recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.

The test data of the worst-case condition(s) was recorded.

Note: Test Software Name: e3, Software Version: 8.2.1.0.

7.3.3. TEST SETUP

Note: For the actual test configuration, please refer to the related item – Photographs of the Test Configuration

7.3.4. TEST RESULT

Product name	LED Dance Floor	Antenna Distance	3 m
Model	LK-I01	Antenna Pole	Vertical / Horizontal
Test Mode	Lighting	Detector Function	Peak / Quasi-peak
Environmental Conditions	24.3°C, 54.1 % RH, 101.1 kPa	6 dB Bandwidth	120 kHz
Tested by	Brian	Test Result	Pass

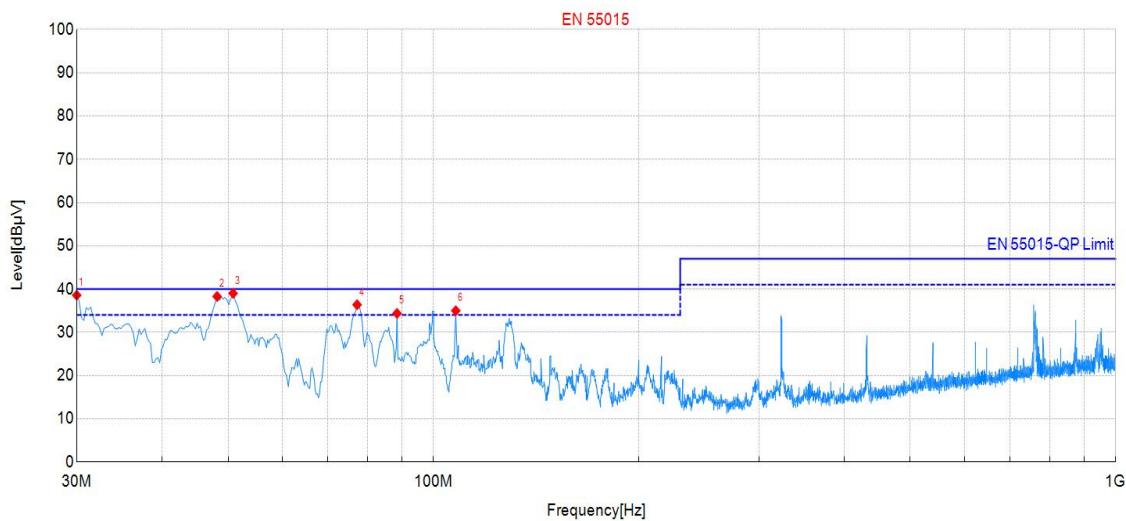
Note:

Freq. = Emission frequency in MHz

Reading level (dB μ V) = Receiver reading(dB μ V)

Corr. Factor (dB/m)=Antenna factor(dB/m)+Cable loss(dB)-Preamp Factor(dB)

Measurement (dB μ V/m)=Reading level(dB μ V)+ Corr. Factor (dB/m)

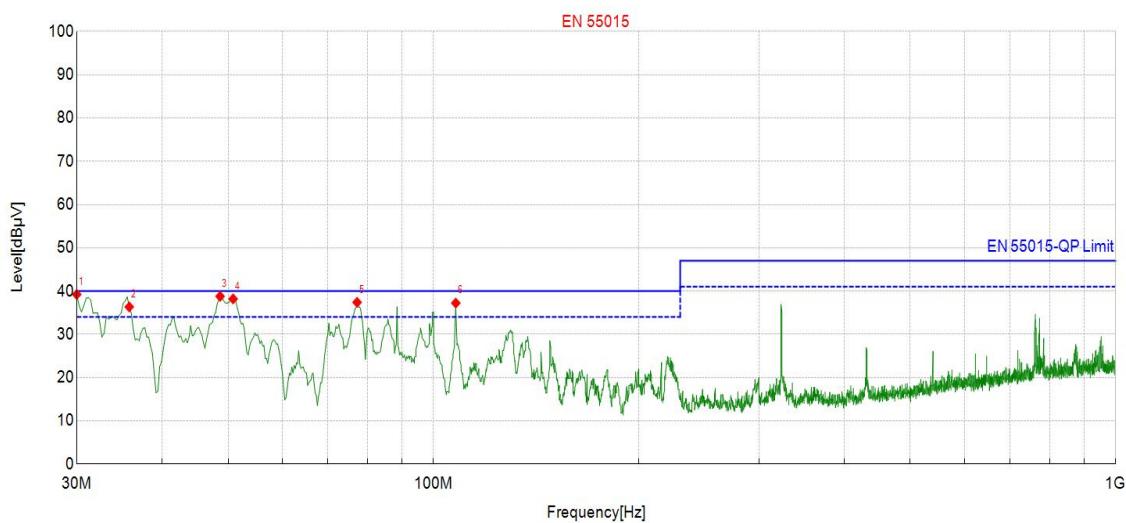

Limit (dB μ V/m) = Limit stated in standard

Over Limit (dB) = Measurement (dB μ V/m) – Limit (dB μ V/m)

QP = Quasi-Peak

Please refer to the following diagram:

Vertical:


Suspected Data List

NO.	Frequency [MHz]	Reading [dB μ V]	Factor [dB/m]	Margin [dB]	Height [cm]	Angle [°]	Det	Pol	Verdict
1	30.00	57.18	-18.60	1.42	100	40	QP	Vertic	PASS
2	48.19	56.47	-18.18	1.71	100	320	QP	Vertic	PASS
3	50.86	57.33	-18.32	0.99	100	90	QP	Vertic	PASS
4	77.29	58.05	-21.67	3.12	100	170	QP	Vertic	PASS
5	88.44	56.01	-21.64	5.63	100	40	QP	Vertic	PASS
6	107.84	54.82	-19.83	5.01	100	130	QP	Vertic	PASS

Note: (1)Level=Reading+Factor

(2)Margin=Limit-Level

Horizontal:

Suspected Data List									
NO.	Frequency [MHz]	Reading [dB μ V]	Factor [dB/m]	Margin [dB]	Height [cm]	Angle [°]	Det	Pol	Verdict
1	30.00	57.82	-18.60	0.78	100	300	QP	Horiz	PASS
2	35.82	54.62	-18.28	3.66	100	320	QP	Horiz	PASS
3	48.67	56.98	-18.20	1.22	100	340	QP	Horiz	PASS
4	50.86	56.50	-18.32	1.82	100	160	QP	Horiz	PASS
5	77.29	59.06	-21.67	2.61	100	200	QP	Horiz	PASS
6	107.84	57.05	-19.83	2.78	100	300	QP	Horiz	PASS

Note:(1)Level=Reading+Factor

(2)Margin=Limit-Level

7.4. HARMONICS CURRENT MEASUREMENT

7.4.1. LIMITS OF HARMONICS CURRENT MEASUREMENT

Limit for Class A equipment	
Harmonics Order N	Max. permissible harmonics current A
Odd harmonics	
3	2.30
5	1.14
7	0.77
9	0.40
11	0.33
13	0.21
$15 \leq n \leq 39$	$0.15x(15/n)$
Even harmonics	
2	1.08
4	0.43
6	0.30
$8 \leq n \leq 40$	$0.23x8/n$

Limit for Class D equipment		
Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A
Odd Harmonics only		
3	3.4	2.30
5	1.9	1.14
7	1.0	0.77
9	0.5	0.40
11	0.35	0.33
13	0.30	0.21
$15 \leq n \leq 39$ (odd harmonics only)	$3.85/n$	$0.15x(15/n)$

Limit for Class C equipment	
Harmonics Order n	Max. permissible harmonics current expressed as a percentage of the input current at the fundamental frequency A
2	2
3	$30xF$
5	10
7	7
9	5
$11 \leq n \leq 39$ (odd harmonics only)	3

F is the circuit power factor

Note: Class A, B, C and D are classified according to item 7.4.2.of this report

Guangdong KEYS Testing Technology Co., Ltd.

Address: Building 1, No.18, Shihuan Road, Dongcheng Subdistrict, Dongguan, Guangdong, China
Tel: +86-0769-22221088 <http://www.keys-lab.com> E-mail: info@keys-lab.com

This report is only responsible for the test results of the samples submitted for inspection, and is not responsible for the source of the samples submitted for inspection.
This report shall not be altered, increased or deleted. Without written approval of KEYS, this test report shall not be copied except in full and published as advertisement.

7.4.2. TEST PROCEDURES

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic. The classification of EUT is according to section 5 of EN 61000-3-2.

The EUT is classified as follows:

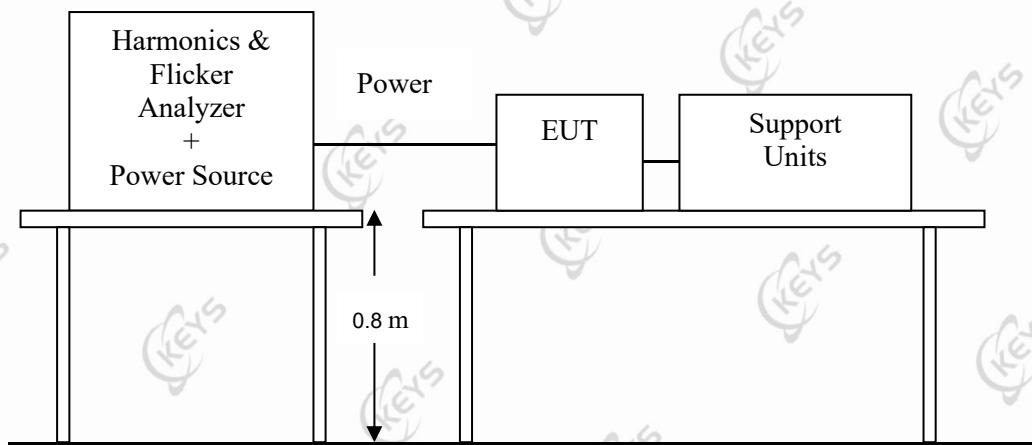
Class A:

Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B:

Portable tools; Arc welding equipment which is not professional equipment.

Class C:


Lighting equipment

Class D:

Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors and television receivers.

The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

7.4.3. TEST SETUP

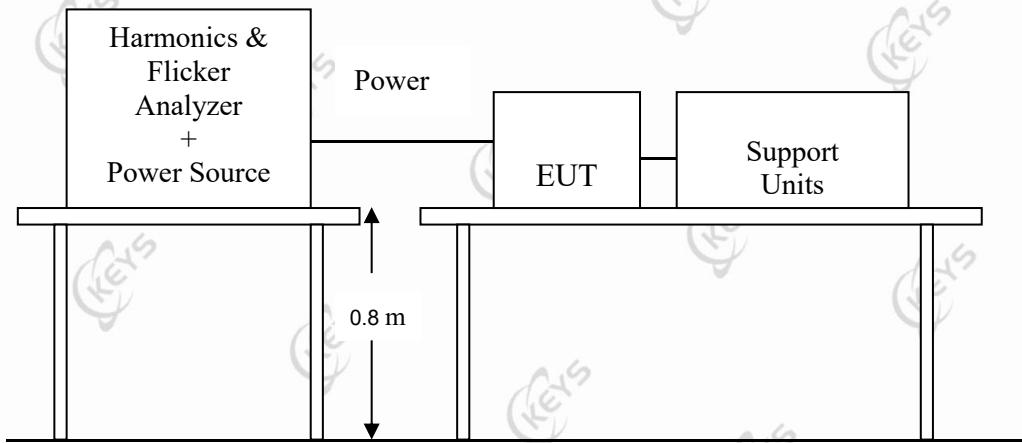
For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.4.4. TEST RESULT

N/A

7.5. VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT

7.5.1. LIMITS OF VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT


TEST ITEM	LIMIT	REMARK
P _{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T _{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4/6/7 %	d _{max} means maximum relative voltage change.
dc (%)	3.3 %	dc means relative steady-state voltage change

7.5.2. TEST PROCEDURE

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under lighting operating conditions.

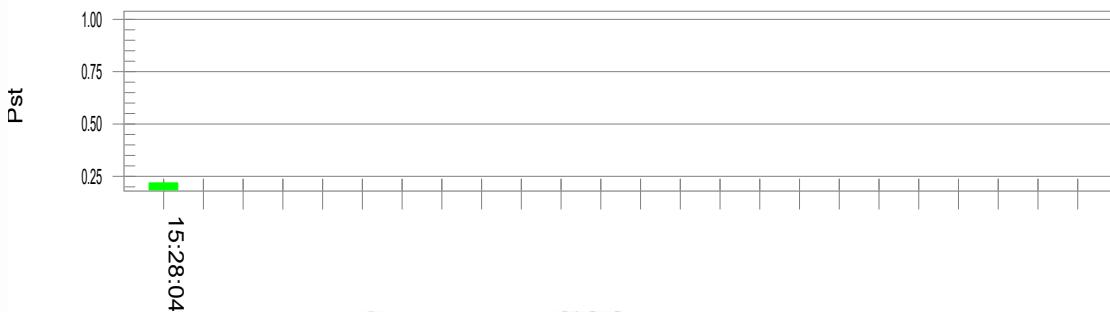
During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

7.5.3. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.5.4. TEST RESULT

Product	LED Dance Floor	Tested by	Brian
---------	-----------------	-----------	-------



Report No.: RKEYS250722088

Date: Aug. 25, 2025

Page 31 of 56

Model	LK-I01	Observation Period (Tp)	10 mins
Test Mode	Lighting	Test Result	Pass
Environmental Conditions	24.3°C, 54.1 % RH, 101.1 kPa		

Please refer to the following test data:**EUT: LED Dance Floor****M/N: LK-I01****Tested by: Brian****Test category: All parameters (European limits)****Test Margin: 100****Test date: 2025/07/25****Start time: 14:01:24****End time: 14:45:29****Test duration (min): 10****Data file name: F-000036.cts_data****Comment: Lighting****Customer:****Test Result: Pass****Status: Test Completed****Pst and limit line****European Limits****Plt and limit line****Parameter values recorded during the test:****Vrms at the end of test (Volt): 230.05**

Highest dt (%):	0.00	Test limit (%):	N/A	N/A
T-max (mS):	0	Test limit (mS):	500.1	Pass
Highest dc (%):	0.00	Test limit (%):	3.32	Pass
Highest dmax (%):	0.04	Test limit (%):	4.06	Pass
Highest Pst (10 min. period):	0.218	Test limit:	1.009	Pass
Highest Plt (2 hr. period):	0.093	Test limit:	0.658	Pass

8. IMMUNITY TEST

8.1. GENERAL DESCRIPTION

Product Standard	EN 61547	
	Test Type	Minimum Requirement
Basic Standard, Specification, and Performance Criterion required	EN 61000-4-2	Electrostatic Discharge – ESD: ±8 kV air discharge, ±4 kV Contact discharge, Road and street lighting equipment 15 kV air discharge, 8kV Contact discharge, Performance Criterion B
	EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test – RS: 80 ~1000 MHz, 3 V/m, 80 % AM(1 kHz), Performance Criterion A
	EN 61000-4-4	Electrical Fast Transient/Burst - EFT, AC Power line: ±1 kV, DC Power line 0.5 kV, Signal line: ±0.5 kV, Performance Criterion B
	EN 61000-4-5	Surge Immunity Test: 1.2/50 μ s Open Circuit Voltage, 8 /20 μ s Short Circuit Current, AC Power Port ~ Line to line: ±0.5 kV, Line to ground: N/A (to self-ballasted lamps and semi-luminaires; luminaires and independent auxiliaries which are less than or equal to 25 W) AC Power Port ~ Line to line: ±1 kV, Line to ground: ±2 kV (to luminaires and independent auxiliaries which are more than 25 W) Road and street lighting equipment~ Line to line: 2 kV, Line to ground: 4 kV Performance Criterion C
	EN 61000-4-6	Conducted Radio Frequency Disturbances Test –CS: 0.15 ~ 80 MHz, 3 Vrms, 80 % AM, 1 kHz, Performance Criterion A
	EN 61000-4-8	Power frequency magnetic field immunity test 50/60 Hz, 3 A/m Performance Criterion A

	EN 61000-4-11	Voltage Dips and Interruptions: i) 30 % reduction for 10 period, Performance Criterion B Voltage Dips and Interruptions: ii) 100 % reduction for 0.5 period Performance Criterion B
--	---------------	--

8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION

Criteria A:	During the test no change of the luminous intensity shall be observed and the regulating control, if any, shall operate during the test as intended.
Criteria B:	During the test the luminous intensity may change to any value. After the test the luminous intensity shall be restored to its initial value within 1 min(30 min for highpressure gas discharge lamps)..Regulating controls need not function during the test, but after the test the mode of the control shall be the same as before the test provided that during the test no mode changing commands were given.
Criteria C:	During and after the test any change of the luminous intensity is allowed and the lamp(s) may be extinguished. After the test, within 30 min, all functions shall return to normal, if necessary by temporary interruption of the mains supply and/or operating the regulating control.

8.3. ELECTROSTATIC DISCHARGE (ESD)

8.3.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-2
Discharge Impedance:	330 Ω
Charging Capacity:	150 pF
Discharge Voltage:	Air Discharge: ±8 kV (Direct), Contact Discharge: ±4 kV (Direct/Indirect) Other :Road and street lighting equipment Air Discharge: 15 kV (Direct) Contact Discharge: 8 kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	10 times at each test point
Discharge Mode:	1 time/s
Performance Criterion:	B

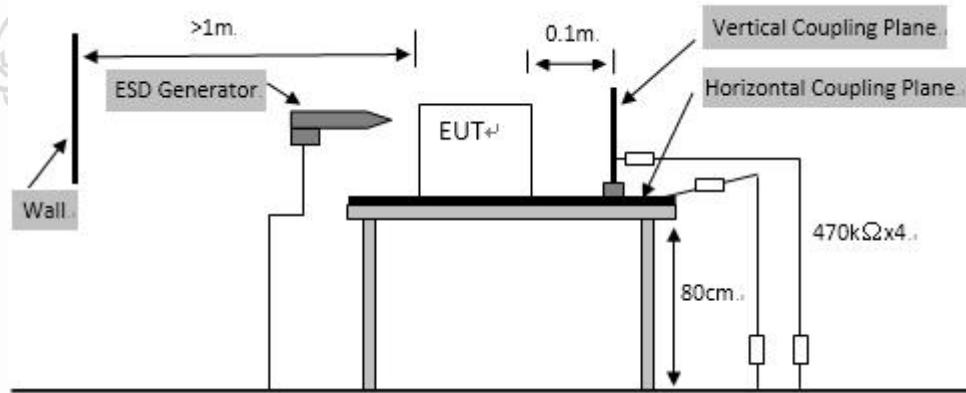
8.3.2. TEST PROCEDURE

The discharges shall be applied in two ways:

a) Contact discharges to the conductive surfaces and coupling planes:

Twenty dischargers (10 with positive and 10 with negative polarity) shall be applied on each accessible metallic part of the enclosure, terminals are excluded. In case of a non-conductive enclosure, dischargers shall be applied on the horizontal or vertical coupling planes. Test shall be performed at a maximum repetition rate of one discharge per second.

b) Air discharges at slots and apertures and insulating surfaces:


On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:

- The EUT was located 0.1 m minimum from all side of the HCP (dimensions 1.6 m x 0.8 m).
- The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10cm with EUT.

- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5 m x 0.5 m) was placed vertically to and 0.1 meters from the EUT.

8.3.3. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Note:

1) TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the ground reference plane (GRP). The GRP consisted of a sheet of aluminum at least 0.25 mm thick, and 2.5 meters square connected to the protective grounding system. A horizontal coupling plane (HCP) (1.6 m x 0.8 m) was placed on the table and attached to the GRP by means of

a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5 mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

2) FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the ground reference plane by an insulating support of 0.1 meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25 mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

8.3.4. TEST RESULT

Product	LED Dance Floor	Environmental Conditions	24.3°C, 52 % RH, 101.2 kPa
Model	LK-I01	Tested By	Brian
Test mode	Lighting	Test Result	Pass

Air Discharge						
Test Points	Test Levels	Results				
		± 8 kV	Pass	Fail	Observation	Performance Criterion
LED	☒	☒	☐	Note ☐ 1☒ 2☐ 3		B
Gap	☒	☒	☐	Note ☐ 1☒ 2☐ 3		B

Contact Discharge						
Test Points	Test Levels	Results				
		± 4 kV	Pass	Fail	Observation	Performance Criterion
HCP	☒	☒	☐	Note ☐ 1☒ 2☐ 3		B
VCP	☒	☒	☐	Note ☐ 1☒ 2☐ 3		B
Screw	☒	☒	☐	Note ☐ 1☒ 2☐ 3		B

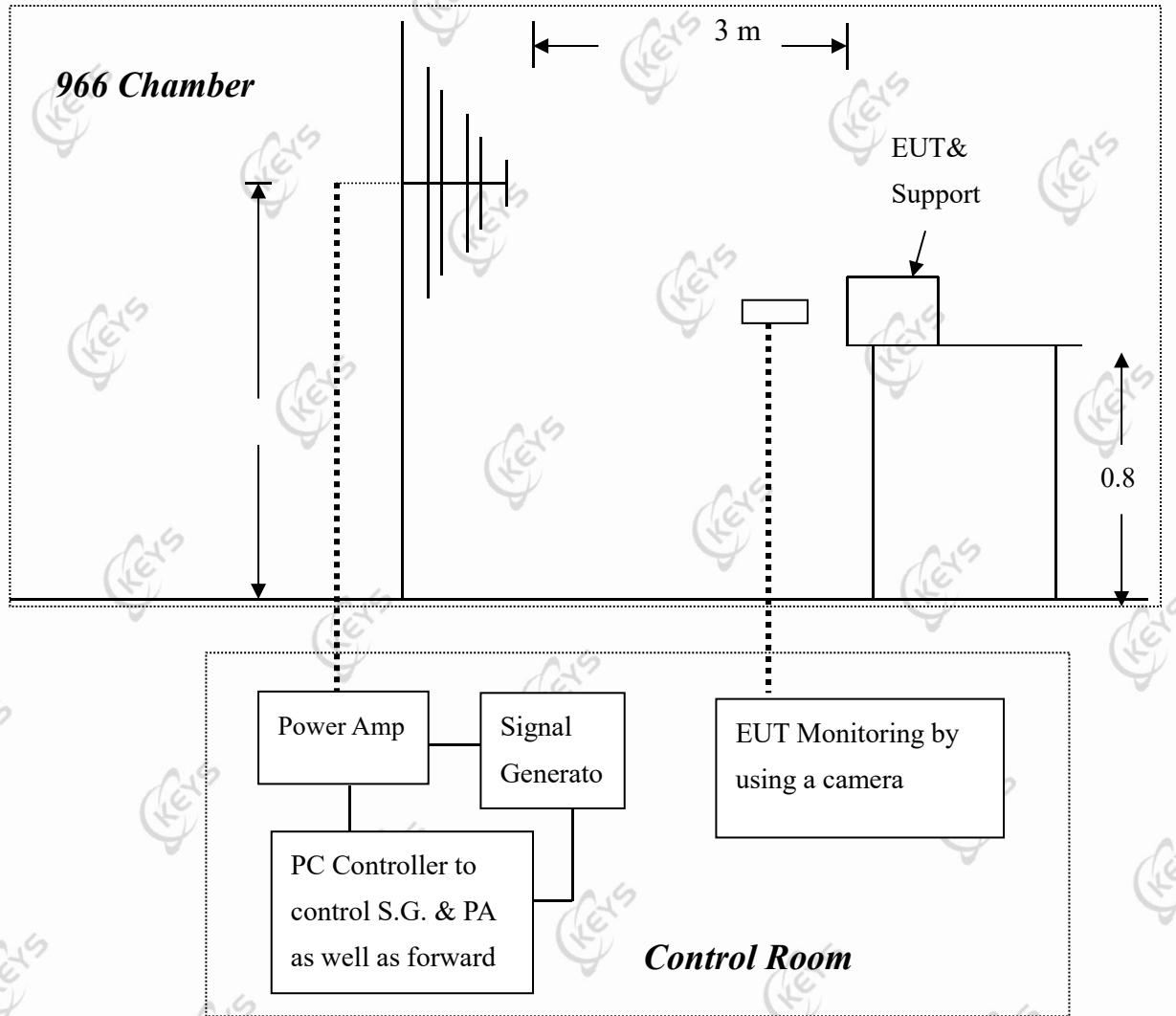
Note: 1) There was no change compared with initial operation during the test.

2) During the test the luminous intensity change, and after the test the luminous intensity can be restored to its initial value within 1 min.

3) During the test, the luminous intensity change and after the test the luminous intensity can return to normal within 30 min.

8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)

8.4.1. TEST SPECIFICATION


Basic Standard:	EN 61000-4-3
Frequency Range:	80 MHz ~ 1000 MHz
Field Strength:	3 V/m
Modulation:	1 kHz Sine Wave, 80 %, AM Modulation
Frequency Step:	1 % of preceding frequency value
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m
Antenna Height:	1.5 m
Performance Criterion:	A

8.4.2. TEST PROCEDURE

The test procedure was in accordance with EN 61000-4-3

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1 kHz sine-wave. The rate of sweep did not exceed 1.5×10^{-3} decade/s, where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

8.4.3. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Note:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

8.4.4. TEST RESULT

Product	LED Dance Floor	Environmental Conditions	24.5°C, 54 % RH
Model	LK-I01	Tested By	Brian
Test mode	Lighting	Test Result	Pass

Frequency (MHz)	Polarity	Position	Field Strength (V/m)	Observation	Performance Criterion
80 ~ 1000	V&H	Front	3	Note <input checked="" type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	A
80 ~ 1000	V&H	Rear	3	Note <input checked="" type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	A
80 ~ 1000	V&H	Left	3	Note <input checked="" type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	A
80 ~ 1000	V&H	Right	3	Note <input checked="" type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	A

Note: 1) There was no change compared with initial operation during the test.
 2) During the test the luminous intensity change ,and after the test the luminous intensity can be restored to its initial value within 1 min.
 3) During the test, the luminous intensity change and after the test the luminous intensity can return to normal within 30 min.

8.5. ELECTRICAL FAST TRANSIENT (EFT)

8.5.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-4
Test Voltage:	AC Power Line: ± 1 kV DC Power Line: 0.5kV Signal/Control Line: ± 0.5 kV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz
Impulse Wave-shape:	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	2 mins
Performance Criterion:	B

8.5.2. TEST PROCEDURE

EUT is placed on a 0.1 m tall wooden table.

EUT operate at normal mode, the transient/burst was 5/50 ns in accordance with EN 61000-4-4, both positive and negative polarity burst waveform were applied.

The duration time of each test line was 2 minutes.

8.5.3. TEST SETUP

The EUT installed in a representative system as described in section 7 of EN 61000-4-4.

For the actual test configuration, please refer to the related item – photographs of the test configuration.

8.5.4. TEST RESULT

Product	LED Dance Floor	Environmental Conditions	24.3°C, 54.0% RH, 101.2kPa
Model	LK-I01	Tested By	Brian
Test mode	Lighting	Test Result	Pass

Test Point	Polarity	Test Level (kV)	Observation	Performance Criterion
L	+/-	1	Note <input type="checkbox"/> 1 <input checked="" type="checkbox"/> 2 <input type="checkbox"/> 3	B
N	+/-	1	Note <input type="checkbox"/> 1 <input checked="" type="checkbox"/> 2 <input type="checkbox"/> 3	B
L - N	+/-	1	Note <input type="checkbox"/> 1 <input checked="" type="checkbox"/> 2 <input type="checkbox"/> 3	B
PE	+/-	1	Note <input type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	/
L - PE	+/-	1	Note <input type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	/
N - PE	+/-	1	Note <input type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	/
L - N - PE	+/-	1	Note <input type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	/
Signal/Control cable	+/-	0.5	Note <input type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	/

Note: 1) There was no change compared with initial operation during the test.

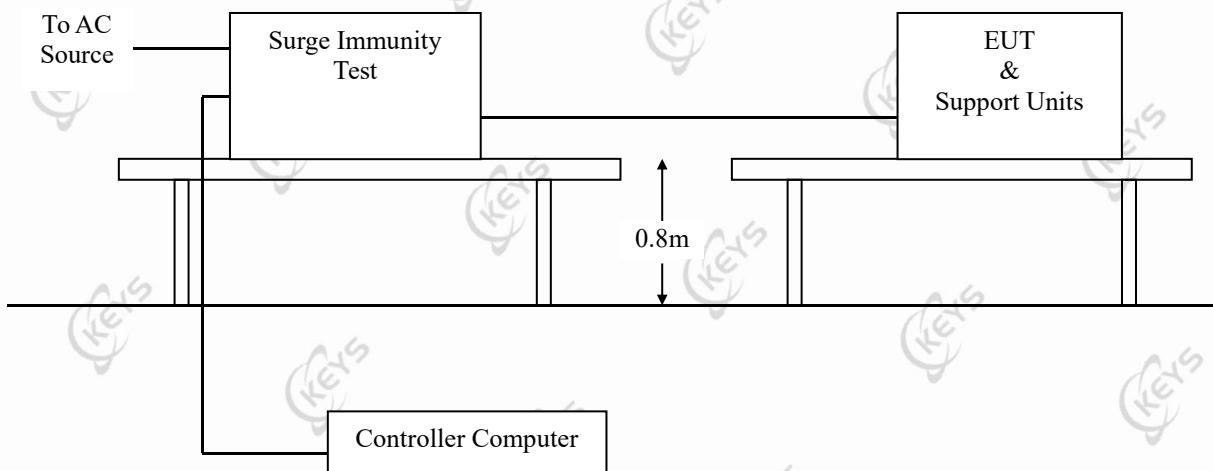
2) During the test the luminous intensity change ,and after the test the luminous intensity can be restored to its initial value within 1 min.

3) During the test, the luminous intensity change and after the test the luminous intensity can return to normal within 30 min.

8.6. SURGE IMMUNITY TEST

8.6.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-5
Wave-Shape:	Combination Wave 1.2/50 μ s Open Circuit Voltage 8/20 μ s Short Circuit Current Power Port ~ Line to line: ± 0.5 kV, Line to ground: N.A (to self-ballasted lamps and semi-luminaires; luminaires and independent auxiliaries which are less than 25 W)
Test Voltage:	Power Port ~ Line to line: ± 1 kV, Line to ground: ± 2 kV (to luminaires and independent auxiliaries which are more than 25 W) Road and street lighting equipment~ Line to line: 2 kV, Line to ground: 4 kV Power Line: L-N / L-PE / N-PE
Surge Input/Output:	2 Ω between networks 12 Ω between network and ground
Generator Source Impedance:	Positive/Negative
Polarity:	90°(positive polarity pulses) / 270°(negative polarity pulses)
Phase Angle:	1 time / min.
Pulse Repetition Rate:	5 positive polarity pulses at the 90° phase angle, and 5 negative polarity pulses at 270° phase angle
Number of Tests:	C
Performance Criterion:	


8.6.2. TEST PROCEDURE

EUT is placed on a 0.1 m (table type equipment) / 0.8 m (floor type equipment) tall wooden table.

EUT operate at normal mode, two types of combination wave generator (1.2/50 us open-circuit voltage and 8/20 us short-circuit current) are applied to the EUT power supply terminals via the capacitive coupling network.

The power cord between the EUT and the coupling/decoupling network shall not exceed 2 m in length.

8.6.3. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

8.6.4. TEST RESULT

Product	LED Dance Floor	Environmental Conditions	24.6°C, 52 % RH, 100.8 kPa
Model	LK-I01	Tested By	Brian
Test mode	Lighting	Test Result	Pass

Test Point	Polarity	Test Level (kV)	Observation	Performance Criterion
L - N	+-	1	Note <input type="checkbox"/> 1 <input checked="" type="checkbox"/> 2 <input type="checkbox"/> 3	C
L - PE	+-	2	Note <input type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	/
N - PE	+-	2	Note <input type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	/

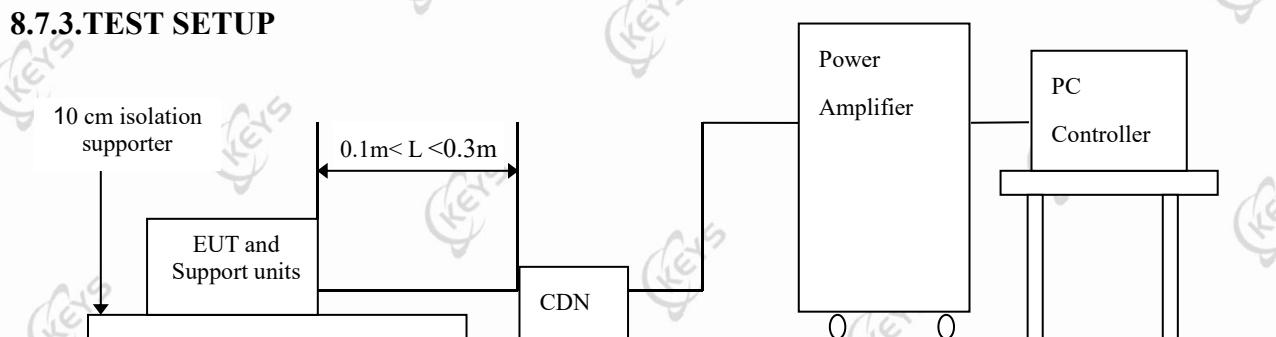
Note: 1) There was no change compared with initial operation during the test.

- 2) During the test the luminous intensity change ,and after the test the luminous intensity can be restored to its initial value within 1 min.
- 3) During the test, the luminous intensity change and after the test the luminous intensity can return to normal within 30 min.

8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)

8.7.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-6
Frequency Range:	0.15 MHz ~80 MHz
Field Strength:	3 V
Modulation:	1 kHz Sine Wave, 80 %, AM Modulation
Frequency Step:	1 % of preceding frequency value
Coupled cable:	Power Mains, Shielded
Coupling device:	CDN-M3/2 (3 wires/2 wires)
Performance Criterion:	A


8.7.2. TEST PROCEDURE

The EUT shall be tested within its intended operating and climatic conditions.

The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50Ω load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5×10^{-3} decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value and the dwell time of the amplitude modulated carrier at each frequency was 0.5 s.

8.7.3. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration

Note: 1) The EUT is setup 0.1 m above Ground Reference Plane

2) All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

8.7.4. TEST RESULT

Product	LED Dance Floor	Environmental Conditions	23.9°C, 50 % RH, 100.6 kPa
Model	LK-I01	Tested By	Brian
Test mode	Lighting	Test Result	Pass

Frequency (MHz)	Field Strength (Vrms)	Injected Position	Injection Method	Observation	Performance Criterion
0.15 ~ 80	3	AC Mains	CDN-M2/M3	Note <input checked="" type="checkbox"/> 1 <input type="checkbox"/> 2 <input type="checkbox"/> 3	A

Note: 1) There was no change compared with initial operation during the test.
 2) During the test the luminous intensity change ,and after the test the luminous intensity can be restored to its initial value within 1 min.
 3) During the test, the luminous intensity change and after the test the luminous intensity can return to normal within 30 min.

8.8. POWER FREQUENCY MAGNETIC FIELD

8.8.1. TEST SPECIFICATION

Basic Standard: EN 61000-4-8

Frequency Range: 50 /60Hz

Field Strength: 3A/m

Observation Time: 5 minutes

Inductance Coil: Rectangular type, 1 m x 1 m

Performance Criterion: A

8.8.2. TEST PROCEDURE

The equipment is configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1 m-thick insulating support.

The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.

The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.

The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

8.8.3. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration

Note:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

8.8.4. TEST RESULT

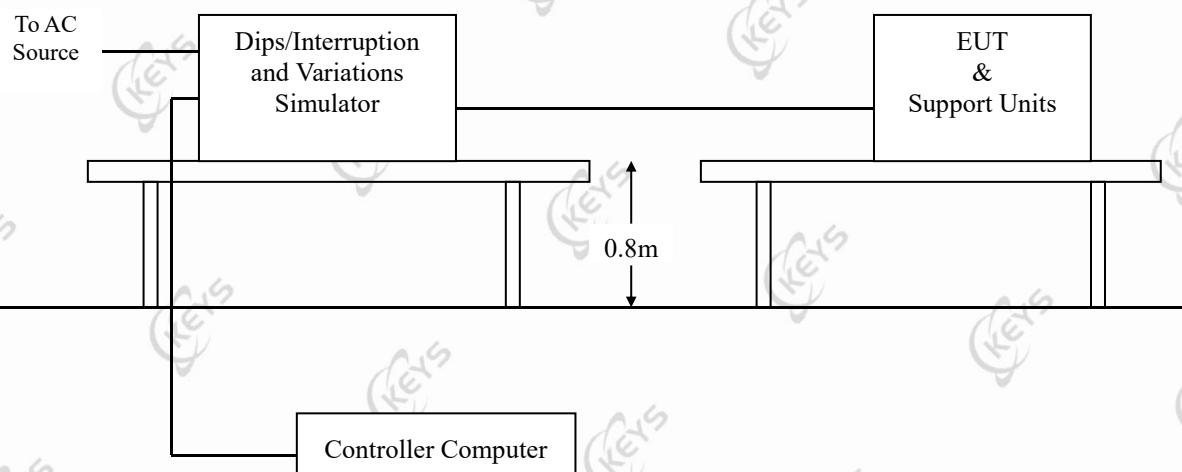
Note: The test only applies to apparatus containing device susceptible to magnetic fields, such as hall elements or magnetic field sensor, so this item isn't applicable to the products.

8.9. VOLTAGE DIP & VOLTAGE INTERRUPTIONS

8.9.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-11
Test Duration Time:	3 test events in sequence
Interval Between Event:	10 seconds
Phase Angle:	0°
Test Cycle:	3 times
Performance Criterion:	70% U_T / 10P, Criterion: B 0% U_T / 0.5 P, Criterion: B

8.9.2. TEST PROCEDURE


The EUT and support units were located on a wooden table, 0.8 m away from ground floor.

Setting the parameter of tests and then perform the test software of test simulator.

Changes to the voltage level shall occur at 0 degree crossing point in the a.c. voltage waveform.

Record the test result in test record form.

8.9.3. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

8.9.4. TEST RESULT

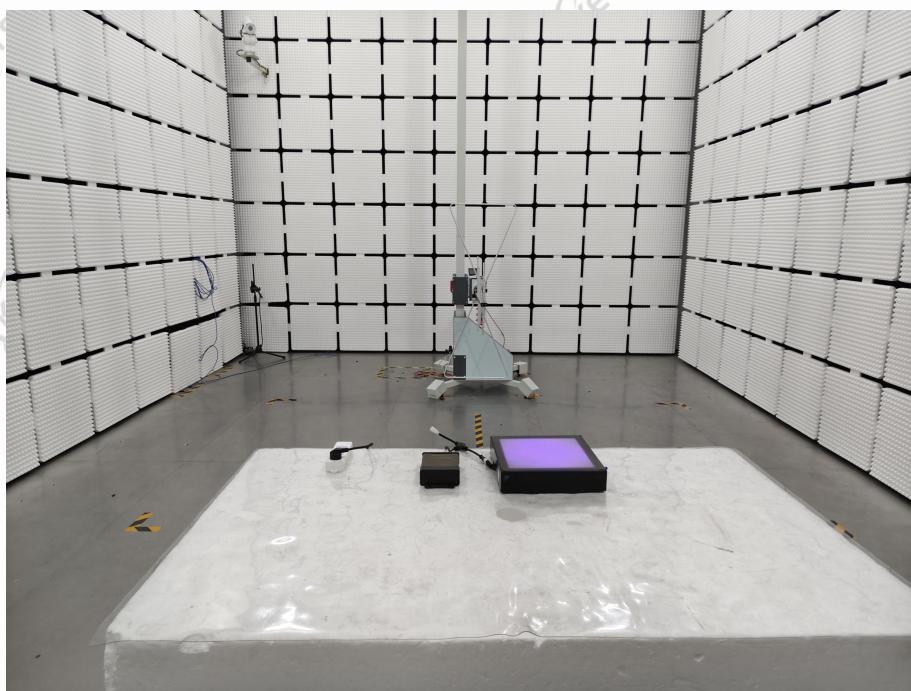
Product	LED Dance Floor	Environmental Conditions	24.3°C, 54 % RH, 101.2 kPa
Model	LK-I01	Tested By	Brian
Test mode	Lighting	Test Result	Pass

Test Power: 230 VAC, 50 Hz			
Voltage (% UT)	Duration (Period)	Observation	Performance Criterion
70	10	Note <input type="checkbox"/> 1 <input checked="" type="checkbox"/> 2 <input type="checkbox"/> 3	B
0	0.5	Note <input type="checkbox"/> 1 <input checked="" type="checkbox"/> 2 <input type="checkbox"/> 3	B

Note: 1) There was no change compared with initial operation during the test.

2) During the test the luminous intensity change ,and after the test the luminous intensity can be

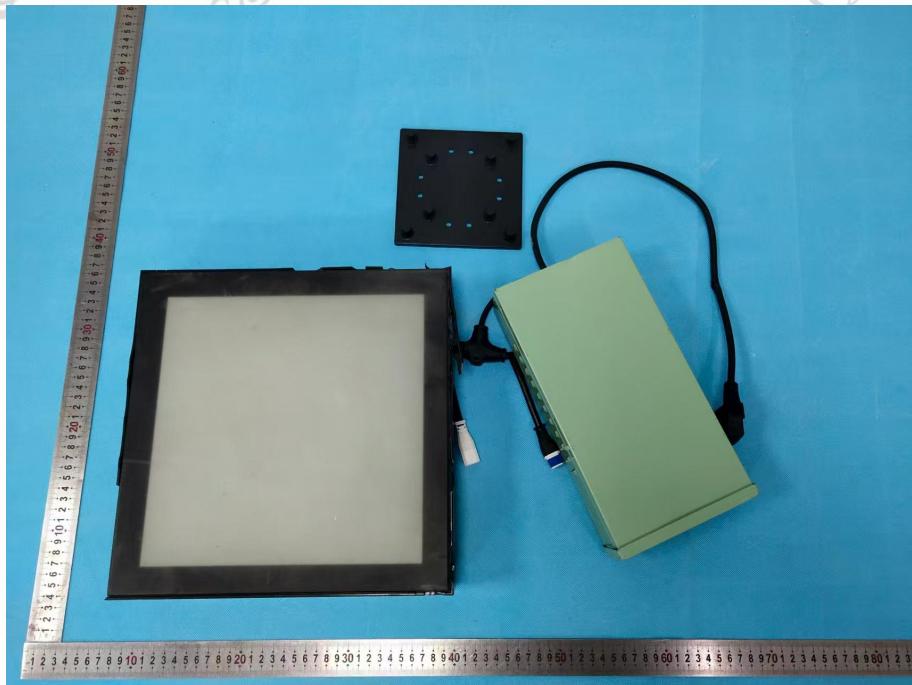
restored to its initial value within 1 min.


3) During the test, the luminous intensity change, and after the test the luminous intensity can return to normal within 30 min.

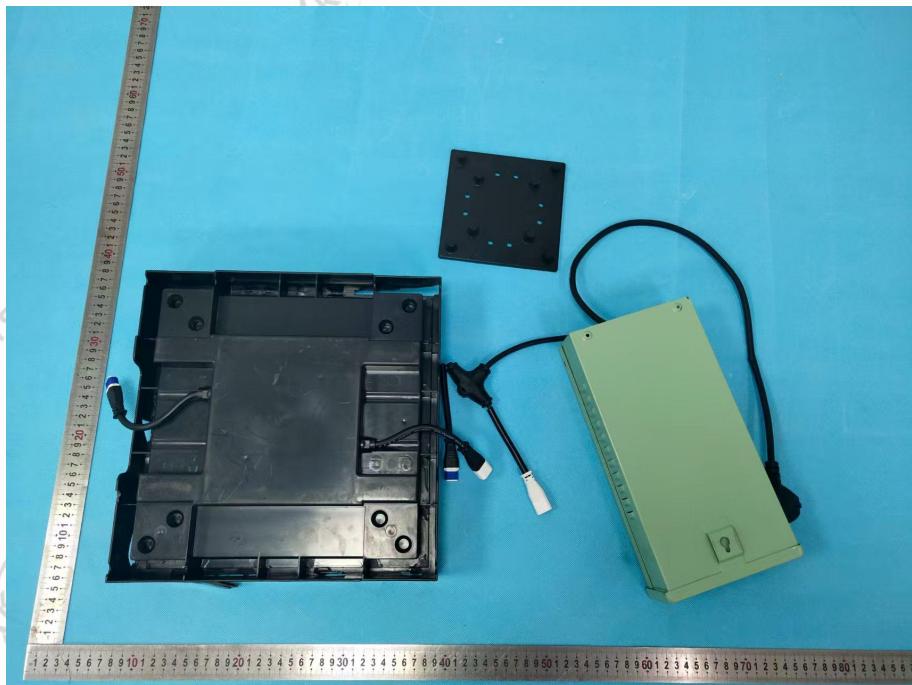
9. PHOTOGRAPHS OF THE TEST CONFIGURATION

CONDUCTED EMISSION TEST

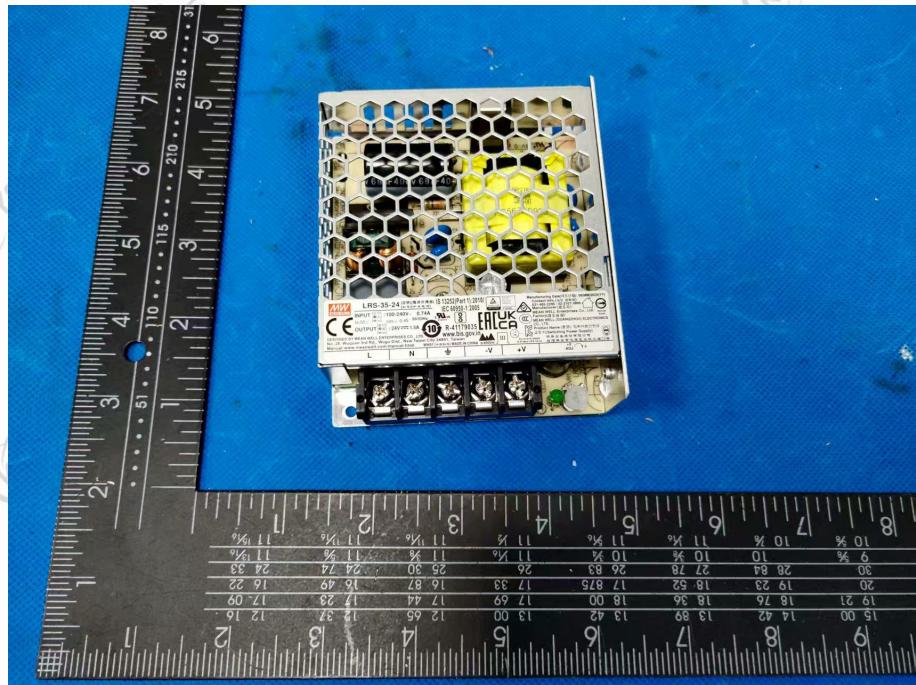
RADIATED EMISSION TEST

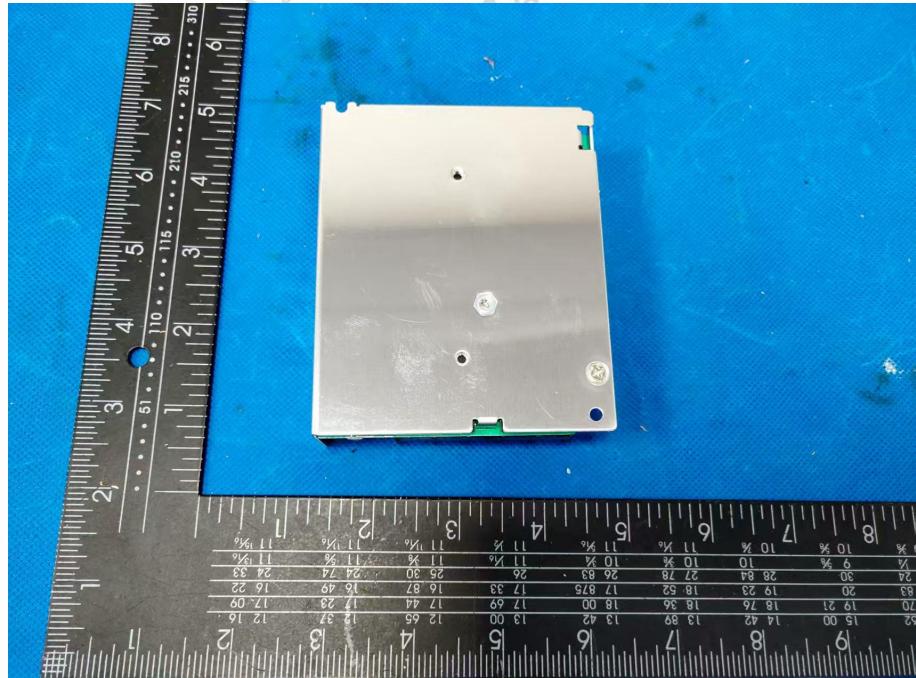


ESD TEST



10. PHOTOGRAPHS OF EUT


- front
- rear
- right side
- left side
- top
- bottom
- internal


- front
- rear
- right side
- left side
- top
- bottom
- internal

- front
- rear
- right side
- left side
- top
- bottom
- internal

- front
- rear
- right side
- left side
- top
- bottom
- internal

- front
- rear
- right side
- left side
- top
- bottom
- internal

*** End of Report ***